STANDARD IONOPHORETIC MOBILITIES OF VARIOUS BIOCHEMICALS, IN AMARANTH UNITS, AT SEVERAL pH VALUES FROM 3.3 to 9.3

W. W. THORNBURG, L. N. WERUM AND H. T. GORDON

Biological Research Laboratory, California Packing Corporation, Emeryville, Calif.

and

Department of Entomology and Parasitology, University of California, Berkeley, Calif. (U.S.A.) (Received November 8th, 1960)

The method of paper ionophoresis described by WERUM *et al.*¹ introduced three dyes as reference standards for the measurement of the mobility of charged compounds. The mobility scale proposed was the distance between spots of the uncharged dye, Apolon, and the negatively charged dye, Amaranth, which was defined as 100 Amunits. The initial report was limited to a detailed presentation of the technique, with only a few examples of its application to the characterization of organic compounds.

The purpose of this second report is to present more data on the Am values of charged compounds of biochemical interest. The method used was exactly that described by WERUM *et al.*¹. No comprehensive survey of all known biochemicals was intended, since the method will surely be considerably improved by our own and other laboratories during the next few years.

EXPERIMENTAL

Methods used for detection of spots

Ionograms were usually extracted with acetone to remove excess buffer; for ionograms run with the pH 9.3 borate buffer (pH 9.3 B), a solution of 5 % pyridine in acetone was used. For detection of amines and amino acids, 0.1 % ninhydrin in acetone was satisfactory. For most carbohydrates, the periodic-benzidine reaction gave the most sensitive detection¹. For most of the acidic and basic compounds, the bromocresol purple indicator reagent ID-2 of GORDON AND HEWEL² gave fairly good spots. Organic phosphate esters were detectable by the ferric-p,p'-methylenebis-(N,N-dimethylaniline) color reaction of GORDON³, which is a minor modification of the ferric-sulfosalicylic acid method of WADE AND MORGAN⁴. A few compounds, such as riboflavin, were detectable by ultraviolet fluorescence.

Preparation of dinitrophenyl derivatives

These derivatives were prepared from I ml or less of a 0.05 M solution of each amino

compound, by adding one drop of a r M solution of dinitrofluorobenzene in methanol and a few drops of 20 % diethylamine in methanol. This is a minor modification of the method of SANGER⁵. After one hour, the reaction mixtures were ionophoresed, without purification.

RESULTS

Present limitation of the Amaranth value in characterization of charged compounds

The experience gained in the present survey has shown that the Am value has more limitations than were anticipated in the earlier work. Since a difference of 0.1 pH unit in the background buffer can cause a 10% variation in the Am value of a substance whose pK is near the pH of the buffer, the buffer pH should be controlled to \pm 0.01 pH unit. If the solution spotted has a relatively high buffering power and a different pH from that of the buffer, the local pH change may cause some streaking of the spots and shifting of the Am value.

The data now show that no simple empirical equation can accurately relate the Am value to the molecular weight, as suggested by WERUM *et al.*¹. For example, the equation $800/\sqrt{M}$ would predict Am values (per electric charge) of 84 for oxalic acid, 70 for agmatine, and 84 for lactic acid, but the observed values are 69, 69 and 102. Calculated molecular weights may therefore be 20% too high or too low. However, this equation may be very useful in approximating the molecular weight of an unknown.

In addition, the data indicate that pK values calculated from ionophoretic mobility data in 30 % formamide buffers of high ionic strength may differ very greatly from pK values in dilute aqueous solution. It has long been known that the pK of substances with closely interacting ionizing groups is markedly affected by ionic strength; e.g., pK_2 for phosphate is 7.2 in very dilute solutions but falls to 6.8 in a o. I M phosphate buffer⁶, while substances such as acetate show much smaller decline in pK with increasing ionic strength. Organic solvents can also exert large and unequal effects on pK values; e.g., the pK of acetic acid rises from 4.7 in water to 7.1in 90 % ethanol, while the pK_1 value of glycine only rises from 2.5 to 3.8 and its pK_2 value from 9.8 to 10.0. Similar pK-shifts occur in the 30 % formamide system; e.g., calculation of pK values from Am values by the method of WERUM et al.¹ for oxalic acid gives an estimated pK_2 (for the more weakly acidic carboxyl group) of 2.7, which is much lower than the value of 4.3 observed in dilute water solutions. The interaction between the adjacent carboxyl groups in oxalic acid is therefore greatly intensified in 30 % formamide solution. On the other hand, the estimated pK_{2} for adipic acid is 5.5, which agrees with the value observed in aqueous solution, presumably because the two carboxyl groups are so far apart that interaction is negligible.

One factor that should be given consideration is the change in pK with temperature. Some pK values can shift by 0.05 pH units for a 10° change in temperature, because ionization increases as temperature rises. Since the buffer temperature is above ambient when paper electrophoresis is run at levels of the order of 10 mW per cm^2 , the pK both of the buffer ions and of the ionizing groups of compounds being analysed will be altered. It is therefore desirable to specify not only the voltage gradient but the wattage level at which a sample has been run.

Possibly one of the largest sources of error is the uneven drying of the ionograms after they have been removed from the apparatus. However, this error can be miminized by cutting off the ends of the ionograms which are immersed in the buffer solution, blotting and drying the ionograms immediately after ionophoresis is finished. The use of multiple dye spots also helps to minimize this error.

From the above discussion it can be seen that in the comparison of Am values of unknowns with listed standard values, emphasis should be placed on the pattern of mobility change with pH rather than on the precise Am values; a single Am value in only one buffer is rarely sufficient.

Mobility data for organic bases

The tables are organized to facilitate identification of unknown compounds. Table I lists organic bases which have only positive (or zero) charge in the pH range from 3.3 to 9.3. A few of these acquire a negative charge in the pH 9.3 borate buffer.

Substance	фН 3.3	рН 4.0	рН 4.7	рН 5.9	фН 7.2	фН 8.0	фН 9.3	фН 9.3В
Ethylenediamine	197				159		73	38
Methylamine	180				187			•
N-Aminoethyl-piperazine	180			155	156		95	
Spermidine	178				147		97	58
3-Dimethylamino-							-	_
<i>n</i> -propylamine	175				156	150	90	
Piperazine	175				111		82	53
Tetraethylenepentamine	164			148	144		74	
1,4-Diaminobutane	163				163		131	78
N-Hydroxyethyl-piperazine	153			83	82		50	
Cadaverine	160				149		137	
Pyrrolidine	140				140		131	
Agmatine	137				137		123	
Ethanolamine	134				135		93	53
Glycinamide	125				112	84	3	
Arcaine	124						124	
3-Amino-1-propanol	120				119		92	61
3-Amino-2-propanol	117				117		70	41
3-Hydroxypiperidine	105				102		78	63
2-Phenylethylamine	100				100		75	•
Ornithine	90	74	71			71	31	7
Amphetamine	90	• •			89		•	•
Glycyl-lysine	89	67			55	43	5	
Lysine	88	79				67	55	7
fyramine	84	• -			84	•	61	•
-Amino-2-hydroxymethyl-	•				•			
1,3-propanediol	80				80		I4	

TABLE I

COMPOUNDS HAVING ONLY ZERO OR POSITIVE CHARGE IN NON-BORATE BUFFERS^{*} (In order of decreasing Am values at pH 3.3)

* For the preparation of the buffer see ref.¹.

(continued on p. 134)

Substance	pН	pН	pН	фH	фH	pН	фH	pН
	3.3	4.0	4.7	5.9	7.2	8.0	9.3	9.3B
Lysyl-glycine	80		63		49	37	8	
Tryptamine	79				79		70	
Cytosine	75		13	4			5	
γ-Aminobutyric acid	74	53	13		2		0	—-I 2
3-Hydroxytyramine	74				74			
Arginine	68		66		62		45	33
Epinephrin	66				67		35	11
D-Glucosamine	61				58	38	6	
D-Galactosamine	59				58	44	10	49

TABLE I (continued)

This suggests that a borate-complexing polyol structure is present, but WERUM *et al.*¹ have shown that the borate buffer in 30 % formamide is apparently more alkaline than the corresponding pH 9.3 non-borate buffer because of hydrogen-bond interactions. A decrease in the Am value in the borate buffer may therefore indicate the presence of an ionizing group with a pK near 10. The compounds are listed in order of decreasing Am value in the pH 3.3 buffer. If an unknown compound has an Am value of 135 at pH 3.3, reference to Table I suggests that it may be ethanolamine or agmatine. If the value at pH 9.3 is close to 123, the compound is not ethanolamine. Since Am values are not yet reliable to much better than 5 %, positive identification as agmatine is not possible. However, the compound is either a strongly monobasic substance of low molecular weight, like pyrrolidine, or a strongly dibasic substance of higher molecular weight, like cadaverine or agmatine.

Mobility of carbohydrates and polyols

Table II lists compounds that have zero charge in the pH range from 3.3 to 9.3 but acquire a negative charge in the pH 9.3 borate buffer. Nearly all the reference com-

Substance	рН 7.2	<i>рН</i> 9.3	фН 9.3В
Riboflavin	0	6*	6
Isoriboflavin	о	5*	6
D-Glucose		ŏ	6
D-Arabinose		о	6
D-Fructose		0	6
D-Xylose		0	6
L-Xylose		0	6

TA	BL	E	I	I

COMPOUNDS HAVING APPROXIMATELY ZERO CHARGE, EXCEPT IN BORATE BUFFER, WHERE THEY HAVE A NEGATIVE CHARGE

(continued on p. 135)

* In pH 9.3 acetate buffer there was no movement from point of application.

Substance	фН 7.2	рН 9.3	фН 9.3В
Dulcitol		о	59
D-Tagatose		0	
D-Galactose		0	56
L-Fucose		0	-56
Mannitol		0	—56
Arabitol		0	55
Adonitol		0	53
Sorbitol		0	-52
D-Lyxose		0	52
D-Ribose		0	-52
D-Melibiose		0	51
D-Mannose		0	49
Erythritol		0	47
Sedoheptulose		0	
D-Turanose		0	
L-Rhamnose		0	-39
Lactose		0	-35
Maltose		0	
Raffinose		0	24
Cellobiose		0	
Sucrose		0	16
Proline		0	8

TABLE II (continued)

pounds are polyols that form borate complexes, but proline is an example of compounds with ionizing groups of pK near 10 that also can acquire a negative charge in the 30 % formamide borate buffer.

Mobility data for organic acids (except phosphate esters)

Table III lists acids having only a negative (or zero) charge in the pH range from 3.3 to 9.3, in order of decreasing Am value in pH 7.2 buffer. Acids that are fully dissociated at pH 7.2 were usually not run at higher pH values. Nearly all these acids are "normal" in that mobility relative to that of Amaranth is not decreased in the 9.3 borate buffer. "Abnormal" acids show this decrease, *e.g.*, most of the phosphate esters listed in Table IV, and also the reference dye, Brilliant Blue.

Mobility data for phosphate esters

Table IV lists these in order of decreasing negative Am value in the pH 9.3 borate buffer. This order is nearly the same as that in the pH 9.3 non-borate buffer, although values for pentose and hexose phosphate esters are higher in the absence of borate. Comparison with the data of WADE AND MORGAN⁴ is possible in the pH 3.3 buffer, although they used a butyric acid-sodium butyrate buffer without added formamide. WADE AND MORGAN used orthophosphate ion as a mobility standard, and in our pH 3.3 system this ion has a mobility of 100 Am units. The calculated Am values from the data of WADE AND MORGAN are 21 for 5'-adenylic acid, compared to 25 in Table IV, and 55 for uridylic acid, compared to 58 in Table IV. There are differences, however, such as the calculated value of 100 for fructose-1,6-diphosphate, compared

TABLE III

COMPOUNDS HAVING ONLY ZERO OR NEGATIVE CHARGE IN NON-BORATE BUFFERS (EXCEPT PHOSPHATE ESTERS, LISTED IN TABLE IV)

Substance	<i>рН</i> 3.3	фН 4.0	рН 4.7	рН 5-9	рН 7.2	рН 8.0	рН 9.3	фН 9.3В
	J.J	4.0	4.7	J.9	7.2		9.5	9.52
Oxalic acid	—124				—138			
trans-Aconitic acid	63		—II2		137			
α-Ketoglutaric acid	95		—107		—136			
Malonic acid	90		-117		136			
cis-Aconitic acid	63		109		133			
Tartaric acid	75		—III		—1 <u>3</u> 0			
Itaconic acid			90		—128			
Succinic acid	18		79		-127			
L-Malic acid	46		97		126			
Pyruvic acid	-122		—123		124			
Maleic acid	124		120					
Glutaric acid			73		—I2I			
Tricarballylic acid	30				—I 20			
Glycolic acid			103		-117			
Citric acid	55		92					
Carbamyl-aspartic acid	39		88		-114			
α-Methylglutaric acid	13		62					
Adipic acid	13		63					
β -Methylglutaconic acid	25		<u>—80</u>		—109			
Lactic acid	3 ⁸		84		-102			
5-Hydroxy-2,4-dichloro-	•		•					
phenoxy-acetic acid	76		-102		100			
Mucochloric acid	-28		81		96			
2-Pyrrolidone-					-			
carboxylic acid	56	88	90		90		96	
Diglycolic acid	64		78				-	
2,4-Dihydroxycinnamic acid			66		86		91	-100
Orotic acid	87				84		86	
Barbituric acid					<u>—80</u>	81	79	
2-Chlorophenoxy-acetic acid	54		84		<u>—80</u>		• -	
2-Hydroxyphenyl-acetic	51		•					
acid	8	-47	59		80		<u>—80</u>	78
Cysteinesulfinic acid	79				-77		92	
Aspartic acid	-21		71		—76		<u>—81</u>	
4-Chloro-2-methyl-			•		•			
phenoxy-acetic acid	46		-77		74			
2,4-Dichlorophenoxy-	•				• •			
acetic acid	52		75		73			
Glutamic acid	<u>–</u> 7		60		-72		77	-77
Shikimic acid		-40	54		-71		69	80
Endophthalic acid	11	•	-52		—71			
2, 4,5-Trichlorophenoxy-			~		,			
acetic acid			72		70			
Quinic acid	-33	65	65		69		—71	60
3,4-Dihydroxyphenyl-acetic					-		•	
acid	—-I	-32	48		67		-71	
Uracil-5-carboxylic acid	9	3-	r -		67	68	71	-
Indole-3-acetic acid	2		36		66		7-	
Kynurenic acid	-		63	66	-65	67	66	
Uric acid			23	39	63	- 7	63	
2,4-Dichlorophenoxy-			-5	J7	~J		~J	
butyric acid					63			
Xanthurenic acid	60		60	57	62	61	61	

(In order of decreasing negative Am values in pH 7.2 buffer)

(continued on p. 137)

Substance	рН 3.3	рН 4.0	рН 4.7	рН 5.9	рН 7.2	рН 8.0	рН 9.3	фН 9.3В
2-Hydroxycinnamic acid	4		41		55		65	68
Gibberellic acid	10		-42		54			
Xanthosine				28	50		-55	69
3,4-Dihydroxycinnamic acid	3		52		47		67	80
3-Methoxy-4-hydroxy-								
cinnamic acid			—38		-47		64	64
2-Hydroxy-4-methoxy-								
cinnamic acid	6		33		—39		—56	56
Aesculin	-7		6	8	36	-35	71	89
6,7-Dihydroxycoumarin			7		24		—56	
4-Hydroxycinnamic acid					21		63	64
6-Methoxy-7-hydroxy-								
coumarin					—I2		—50	49
Xanthine	5			12	11		65	
7,8-Dihydroxycoumarin					10			51
Umbelliferone (7-hydroxy-								
coumarin	3		3		6		51	58
Inosine					2		-27	61
Djenkolic acid	0				0		-62	
2-Thiolhistidine	0		0	0	0			
Homocystine	0				0		22	
Ergothioneine	0		0	0	0		0	
7-Methoxycoumarin	0		0		0		0	0

TABLE III (continued)

to 88 in Table IV. Nevertheless, the data of WADE AND MORGAN can be used to supplement Table IV, in the pH 3.3 buffer, simply by multiplying their M_0 values by 100 to give Am values. Since they measured mobility from the starting line, their values do not include a correction for electro-osmotic flow, and should be lower than Am values. Discrepancies such as that for fructose-diphosphate may reflect the greater care taken by WADE AND MORGAN in using formic acid-washed paper to

TABLE I

PHOSPHATE ESTERS (In order of decreasing negative Am values in 9.3 borate buffer)

Substance	рН 3.3	рН 4.0	рН 4.7	рН 5.9	рН 7.2	рН 8.0	рН 9.3	фН 9.3В
North All All All All All All All All All Al								
Flavin-adenine dinucleotide	68	85	85	84			91	-121
Riboflavin-5-phosphate(Na)	66	66	-72	69	84	91	102	—119
Fructose-1,6-diphosphate(B	a) —88		82	-82	87	109	109	-92
O-Phosphoserine	60		66				-95	90
Uridylic acid	58		63	63	77		93	-70
Guanylic acid	-46		56	-59	74		89	70
5'-Adenylic acid	-25		49	50	65		77	67
Deoxycytidylic acid	-10		-47	54	70			-63
3'-Adenylic acid	-31		51	-53	69		<u>-81</u>	-63
Glucose-1-phosphate (K)			55	65	-72	84	84	62
Deoxyadenylic acid	-22		49	53	64		80	61
Cytidylic acid	-14		-52	54	70			60
Glucose-6-phosphate (Ba)		54		-53	61	70	-78	—бо
O-Phosphoethanolamine	— I		—I0				57	58

remove polyvalent ions that might form complexes with phosphates, and also the fact that they used only sodium salts, not barium or calcium salts. Another difference is the lower Lewis ionic strength (0.025) of the buffer used by WADE AND MORGAN, compared to the value of 0.09 for the standard pH 3.3 buffer used in our work.

The mobility pattern of a simple phosphate ester indicates a single negative charge in the range from pH 3.3 to 5.9, the Am value per charge being of the order of 50 for compounds of relatively low molecular weight. Mobility rises at pH 7.2 (which is near the apparent pK_2 in 30% formamide), and is maximal at pH 9.3, with 2 negative charges and an Am value per charge of the order of 40. If mobility increases in the pH 9.3 borate buffer, this suggests a polyol phosphate; if it decreases a cyclic sugar phosphate. If there is a striking fall in mobility in the pH 3.3 buffer, this indicates that a weakly basic group (such as adenine) is acquiring a positive charge; if mobility is very low at pH 5.9 and lower, a strong basic group is indicated. The presence of two phosphate groups raises the Am value but does not alter the pH-mobility pattern; this will probably also be true for the pyrophosphate esters.

Mobility of amphoteric compounds

Table V lists compounds that have a negative charge at pH 9.3 but a positive charge at pH 3.3, in order of decreasing Am values at pH 9.3. These are mostly neutral

Substance	рН 3.3	рН 4.0	<i>рН</i> 4.7	рН 5.9	рН 7.2	фН 8.0	<i>рН</i> 9.3	фН 9.3В
Glycyl-aspartic acid	8		42			67	101	
Glycyl-glutamic acid	17				-58	67	96	
Glycyl-glycyl-glycine	30						-64	66
meso-Lanthionine	5						63	
Acetyl-histidine	27		0	0	32	57	59	
Alanyl-glycyl-glycine	32				3	-23	59	
Glycyl-glycyl-glycyl-glycine	30				0	2I	58	
Alanyl-asparagine	22			5	2	—17	57	
Glycyl-methionine	27				0	I 7	54	
Glycyl-tyrosine	26				0	16	-52	
Glycyl-proline	28				0	-9	-49	
Glycyl-histidine	72		63	52	22	2	-49	
Leucyl-tyrosine	23				3	-22	-48	
Histidyl-histidine	97		69	53	—1 I	—18	-45	
DL-allo-Cystathionine	6							
Carnosine	64	61	59	50	23		-29	
Serine	3							51
Isoguanine	54	21	2			8	23	Ū
3,4-Dihydroxyphenylalanine	6							—56
Glycine	7		0		0		-12	-37
Alanine	5						IO	
Histidine	68		63		8		—I0	—33
Guanine	8		-			-2	-10	55
Isocytosine	59		I	3			-10	
8-Alanine	61	22	14	•			3	—15
Adenine		22	8			0	-2	

TABLE V

COMPOUNDS HAVING BOTH NEGATIVE AND POSITIVE CHARGES IN NON-BORATE BUFFERS (In order of decreasing Am values in pH 9.3 acetate buffer)

amino acids and peptides, since the more strongly basic or acidic ones fall in Tables I and III. Resolution and characterization of neutral peptides, like that of neutral amino acids, is poor except when additional ionizing groups give informative pH-mobility patterns.

Mobility of dinitrophenyl derivatives

Table VI lists Am values in order of decreasing negative Am at pH 9.3 of impure

TABLE VI

DINITROPHENYL DERIVATIVES OF AMINO ACIDS AND PEPTIDES

(In order of decreasing negative Am values at pH 9.3; values from crude preparations high in salt are always slightly below pure solution values)

	 рН	 рН	 рН	¢Н	фН	фН	¢Н	фН
Substance	3.3	4.0	4.7	5.9	7.2	8.0	9.3	9.3B
DNP-aspartic acid	25		89		97		96	98
DNP-2,4-diaminobutyric acid	l o		0		81		80	83
DNP-glycyl-aspartic acid	—15		70		82		82	82
DNP-glycyl-glutamic acid DNP-amino-methylene-	—I2		68		<u>—80</u>		81	79
sulfonic acid	34		72		70		69	70
DNP-djenkolic acid	-16		39		-38		70	69
DNP-glycine	48		65		68		66	
DNP-taurine	34		65		63		65	
DNP- <i>a</i> -alanine (pure)	-48		67		65		62	
DNP- α -alanine (crude)	48		61		61		—58	-63
$DNP-\beta$ -alanine	—I I		51		—58		63	62
DNP-allyl-glycine	46		-55		59		61	58
DNP-serine	47		62		61		60	
DNP- <i>a</i> -aminobutyric acid	48		—56		59		60	60
DNP-y-aminobutyric acid	4		-39		—56		60	58
DNP- <i>a</i> -aminoisobutyric acid	47		55		—56			59
DNP-proline	-47		-55		57		58	
DNP-threonine	-45		53		56		-55	56
DNP-alanyl-leucine	41		55		55		55	—56
DNP-hydroxyproline	-48		53		53		—56	55
DNP-methionine sulfoxide	52		—50		-52		57	55
DNP-methionine	-45		—53		—54		54	55
DNP-isoleucine	-42		52		54		56	54
DNP-methionine sulfoximine			-52		52		54	53
DNP-glycyl-proline	24		46		-50		50	-51
DNP-phenylalanine DNP-α,ε-diaminopimelic	43		48		48		48	51
acid	-14		4 I		41		49	55
DNP- <i>e</i> -aminocaproic acid	2		—30		50		49	50
DNP-histidine	0		0		32		-48	48
DNP-glycyl-tyrosine	21		40		-45		46	45
DNP-glycyl-phenylalanine	22						45	45
DNP-alanyl-glycyl-glycine	—18		44		43		43	44
DNP-tryptophan	<u> </u>		41		4I			
DNP-glycyl-histidine	5		-32		-33		43	-44
DNP-glycyl-tryptophan	-17		-37		-42		-41	42
DNP-δ-hydroxylysine			-37		36		-37	-39
DNP-leucyl-tyrosine	16		38		-37		36	38
DNP-lysyl-glycine	6		32		32		38	36
DNP-galactosamine	ο		0		0		0	-31
DNP-glucosamine	0		0		0		0	28

dinitrophenyl derivatives of various amino acids and peptides. These tend to be somewhat lower than the values for pure derivatives. The pH-mobility patterns are relatively uninformative, and formation of dinitrophenyl derivatives is of limited value in characterization of unknowns by ionophoresis.

Mobility of some inorganic ions

140

Table VII lists a few ions, in order of decreasing Am value at pH 3.3. Values are of the expected order of magnitude in solutions of high ionic strength. It is interesting to note that calcium and magnesium ions move well even in the pH 9.3 buffer, presumably because the 30% formamide maintains the ionization of their hydroxides.

Substance	рН 3-3	рН 4.0	фН 4.7	фН 5.9	фН 7.2	фН 8.0	рН 9.3	фН 9.3В
Potassium	202	199	195	218	217	216	223	160
Sodium	151	156	157	157	159	158	160	135
Calcium	135	130			-	-	113	
Magnesium	121	116					106	
Manganese	104	100						
Cobalt	103	98						
Nickel	99	89						
Phosphate	100	99	97	99	98	100	I 35	89

TABLE VII inorganic ions

Sodium, potassium, phosphate, and probably other soluble ions show a striking relative mobility depression in the pH 9.3 borate buffer, presumably caused by the very high Lewis ionic strength (0.38) of this buffer.

Influence of buffer viscosity on ionic mobility

The important factors determining the mobility of ions are the ionic strength and the viscosity of the buffer. The viscosity of 30% formamide (relative to water) is 1.13. Most of the organic buffers increase the viscosity to about 1.2, but the more concentrated pH 9.3 borate buffer has a relative viscosity of 1.34. In this buffer the absolute mobility of Amaranth is only about 0.35 mm/h, and the mobility of Brilliant Blue is 50~Am units. If the borate buffer is diluted with three volumes of 30% formamide, its viscosity and ionic strength become comparable to the other standard buffers. The absolute mobility of Amaranth, however, rises to 0.55 mm/h (compared to about 0.45–0.5 mm/h in the other buffers), and the relative mobility of Brilliant Blue rises to 55~Am units (compared to 54-63 units in the other buffers).

A similar depression both of absolute mobilities and of the Am value of Brilliant Blue has been noted when a more concentrated pH 8 (N-ethylmorpholine acetate) buffer was compared with the standard buffer, and it is clear that the ionic strength can significantly influence Am values.

SUMMARY

The Am values of many known compounds in 30% formamide organic buffers at several pH values have been tabulated to aid in comparison and identification of unknowns. The pK and molecular weight values calculable from ionophoretic data sometimes differ considerably from expected values because of unusually strong molecular interactions with the formamide buffers. The mobility-pH pattern nevertheless gives significant information about molecular structure of unknowns.

REFERENCES

- ¹ L. N. WERUM, H. T. GORDON AND W. THORNBURG, J. Chromatog., 3 (1960) 125.
- ² H. T. GORDON AND C. A. HEWEL, Anal. Chem., 27 (1955) 1471.
- ³ H. T. GORDON, manuscript in preparation.
- ⁴ H. E. WADE AND D. M. MORGAN, Biochem. J., 60 (1955) 264.
- ⁵ F. SANGER., Biochem. J., 39 (1945) 507.
- ⁶ A. A. GREEN, J. Am. Chem. Soc., 55 (1933) 2331.